
Rich text field
Rich text field
Rich text field

Why do most machine learning models never make it to production? They’re blocked by developer resources. Get the power to build, test and iterate on a Python-friendly platform.
Data science is business-critical — but too often, you must rely on data engineers to provide access to data, or deploy your ML models. Quix provides you with independence. A simple platform for you to build real time data pipelines, both for your ETL and model deployment.
Visualize your data — as it’s streaming in, in an instant, and at any level of granularity. Explore real-time and historical data, and unify various sources in contextual streams. Which variables influence your models? What happens if you make a change? Find out by exploring within Quix or in Jupyter Notebooks.
Develop and deploy your own data features without support from a data engineer. Use your favorite Python libraries to develop feature variables. Deploy them to production with a single click. Feed your models, dashboards and monitoring tools in real time, without developer support.
Train any model, anywhere. Export training data to any environment with a few clicks. Easily deploy it to Quix to process live data. Build real-time processing pipelines by combining feature creation and model predictions.
Run your ML artifact in the Quix development environment — crafted specifically for Python professionals so there are no language barriers. Back test your results in real time against historical or live data streams. You can also A/B test models in parallel to uncover new insights and optimize.
Online learning models re-train themselves in real time as new data emerges, adapting quickly to changing environments. Tiktok and Netflix use online learning, and now you can too. Simply combine an online learning library such as River with Quix to create next-generation adaptive ML products.
Visualize your data — as it’s streaming in, in an instant, and at any level of granularity. Explore real-time and historical data, and unify various sources in contextual streams. Which variables influence your models? What happens if you make a change? Find out by exploring within Quix or in Jupyter Notebooks.
Develop and deploy your own data features without support from a data engineer. Use your favorite Python libraries to develop feature variables. Deploy them to production with a single click. Feed your models, dashboards and monitoring tools in real time, without developer support.
Train any model, anywhere. Export training data to any environment with a few clicks. Easily deploy it to Quix to process live data. Build real-time processing pipelines by combining feature creation and model predictions.
Run your ML artifact in the Quix development environment — crafted specifically for Python professionals so there are no language barriers. Back test your results in real time against historical or live data streams. You can also A/B test models in parallel to uncover new insights and optimize.
Online learning models re-train themselves in real time as new data emerges, adapting quickly to changing environments. Tiktok and Netflix use online learning, and now you can too. Simply combine an online learning library such as River with Quix to create next-generation adaptive ML products.
Customer story
Schedule a free 30 minute chat with a member of our team to discuss your use case and get all your questions answered.
Quix was founded by Formula 1 McLaren engineers who used stream processing to optimize race performance. They built the infrastructure to power predictions, evaluate scenarios, and distill millions of variables into concrete, actionable recommendations.
Their vision was to bring this stream processing technology to data scientists in any industry — without data engineers gatekeeping access to data and production viability.
With a Python-friendly platform purpose built for data scientists, Quix empowers you to do your best work.